$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=\text { the value of the loan or investment } \\
& P=\text { principal } \\
& r=\text { interest rate per period } \rightarrow r=\frac{\% \text { as decimal }}{n} \\
& n=\text { number of interest periods per year } \\
& \text { (annually }=1, \text { semi-annual }=2 \text {, monthly }=12, \text { daily =365) } \\
& t=\text { total number of interest periods for the whole loan }
\end{aligned}
$$

Name

$$
\begin{aligned}
& I=A-P \\
& I=\text { interest }
\end{aligned}
$$

$A=$ value of loan or investment

$$
P=\text { principal }
$$

1.) Evan invested $\$ 52400$ at 6% per year compounded annually for 5 years. What is his total value
2.) Emily borrowed $\$ 10400$ for 4 years at 12.7% per year and the interest is compounded semi-annually.

What is the total she will pay back?
b.) How much interest did she pay?

$$
\begin{aligned}
I & =A-A \\
& =17018.97-70400=6618.97
\end{aligned}
$$

二
$=k$

$$
=\$ 7018.97
$$

3.) Jason invested $\$ 5300$ for 2 years. He earns 2.9% per year and his interest is compounded monthly.

$$
\begin{array}{rl}
P=5300 & A=p\left(1+\frac{r}{n}\right)^{n t} \\
r=-029 & =5300\left(1+\frac{029}{12}\right)^{12 \times 2} \\
n=32 & =5300(1.05964) \\
t=2 & =561609
\end{array}
$$

$$
\begin{aligned}
& A=P\left(1+\frac{r}{r}\right)^{n t} \\
& 2 \times 4=10,400(1+0.0635)^{8} \\
& =10,400(1.6364)
\end{aligned}
$$

on this investment?

$$
\begin{aligned}
& r=.06 \\
& n=1 \\
& =52,400\left(1+\frac{.06}{6}\right)^{(1 \times 5)} \$ \\
& =52,400(1.06)^{5}=70,123.02
\end{aligned}
$$

4.) Dianne invested $\$ 100$ at 8.2% per year which is compounded annually for 7 years. How much will her $\$ 100$ be worth in 7 years?

$$
\begin{aligned}
& P=\$ 100 \\
& p=.082 \\
& m=1 \\
& i=
\end{aligned}
$$

$$
A=P\left(1+\frac{r}{n}\right)^{n}
$$

$$
\begin{aligned}
& =100\left(1+\frac{082}{1}\right) 1 \times 7 \\
& =101
\end{aligned}
$$

$$
=\$ 173.62
$$

5.) Bill invested $\$ 18100$ at 13.6% per year compounded quarterly for 7.5 years. How much will his
6.) Jennifer invested her allowance of $\$ 270$ which gets $15 \% /$ a compounded annually for 3 years.

How much will she have in 3 years?

$$
\begin{aligned}
& P=\partial 70 \\
& r=.15 \\
& n=1 \\
& t=3
\end{aligned}
$$

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =270\left(1+\frac{15}{1}\right)^{1 \times 3} \\
& =270(1.52)=41064
\end{aligned}
$$

7.) You gave your friend a short term 2 year loan of $\$ 43,000$ at $3 \% /$ a compounded annually.

$$
t=2
$$

b) How much interest does your friend end up paying?

$$
45618,70
$$

$$
I=A-P=-\frac{43,000}{\$ 2618.70}
$$

$$
\begin{aligned}
& \text { How much in total will your friend end up paying you back? } \\
& P=43,000 \quad A=P\left(1+\frac{r}{x}\right) n t=43000(1.0609) \\
& \begin{array}{l}
r=.03 \\
n=1
\end{array} \\
& =43000\left(1+\frac{.03}{1}\right)^{1 \times 2}=45618.70
\end{aligned}
$$

$$
\begin{aligned}
& \text { investment be worth after this time? } \\
& P=\$ / 8,100 \\
& A=p\left(1+\frac{r}{x}\right)^{n t} \\
& r=-136 \\
& n=4 \\
& t \rightarrow \underline{\sim} \\
& =18.100\left(1+\frac{.136}{4}\right)^{4 \times 3.5} \\
& =181001.52 .7265) \\
& \text { - \$ } 49350.86
\end{aligned}
$$

